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ABSTRACT

A convolution system can have a frequency response which is

small for all frequencies, yet still greatly amplify the peaks of signals

passing through it. For finite dimensional systems, however, we estab-

lish the simple bound II h 111 
< (2n +1) II h 1 H-, where II h I1 is the peak

gain of the system, II h II H- is the maximum frequency response of the

system, and n its dimension. The same result for continuous time sys-

tems is due to Gohberg and Doyle and is mentioned in [HWL]. Awl

The bound implies that H'-optimal controllers, which minimize the
>__ maximum of some disturbance-to-error transfer function, cannot have ,, L E C "E
0.. very large peak gains from the disturbance to error. DEC 4 1988

CLI

LA_ We consider the discrete-time convolution system y h*u where u (the input),
y (the output) and h (the impulse response) are real valued sequences on the nonne-

C gative integers Z + (0, 1,2...), and h*u is defined by

k
Yk = ,hk-iui (1.0.1)

i =0

We now examine several different measures of the 'size' of a signal or the 'gain' of

the convolution system (1.0.1).
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1.1. BIBO Stability and Peak Gain ) -

The peak or 1*-norm of a signal u is defined by

flu I.A SPI k I

The set of bounded sequences, that is, those with finite peak, will be denoted il',

as usual. The system (1.0.1) will have the property that its output y is bounded when-

ever its input u is bounded if and only if

00Flhi l I IIh IIj<-* 111
i=Oi---0

in which case we can bound the peak of the output by

Ily 1.0< Ilh IlI Ilu 1.. (1.1.2)

This last property (1.1.2) is called bounded input bounded output (BIBO) stability; a

convolution system satisfying (1.1.1) is called BIBO stable. The bound (1.1.2) is in

fact sharp, since there is a nonzero u E 1.0 with

IIh*u I1..= Ilu !l**lh III

Thus II h II I is the peak gain of the convolution operator (1.0.1); it is the maximum

factor by which the convolution operator can increase the peak of its input.

1.2. 12 or RMS Gain

Another useful norm on signals is the 12 -norm

IIu 112 =_ [kui21

which may be interpreted as the squareroot of the total normalized energy in the signal

u. 12 will denote the set of signals with finite 12 norm. The convolution operator

(1.0.1) will map 12 signals into 12 signals if and only if the power series

H(X) =A Xh. (1.2.1)
i=O

is analytic and bounded for (complex) I X I< 1, that is,

Ilh.IIH_ sup hi Xi < (1.2.2)

in which case the following bound holds:

Ily 112 < IIh IIIH-Iu Il2 (1.2.3)
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Such systems are called 12-stable.

The bound (1.2.3) is also sharp; there are u e 12 with Ily 112/Ilu 112 as close as we

want to 11 h It H-, (but not equal, as in peak case, unless H has constant modulus on the

unit circle). Hence II h 1 H- may be interpreted as the 12 gain of the convolution opera-

tor (1.0.1).

We remark here that the power series (1.2.1) need not converge for I X 1 =1, and

that the requirement (1.2.2) is strictly weaker than (1), since IIh IIH-: IIh Il1. Thus

every BIBO convolution operator is 12 -stable, but not vice versa. Examples of 12-stable

but not BIBO stable convolution operators are quite contrived; one is given by

hk _ (k!)-lH()(0), H (X) = e"I'1 (1.2.4)

When the convolution operator is also BIBO stable, the power series (1.2.1) does

converge for IX I = 1 and
IIh IH- = supIH(e 0 )1

0

Thus the 12-gain II h II H- can be interpreted as the maximum frequency response of

(1.0.1), that is, the maximum steady state response to sinusoidal inputs bounded by

one. We note for later reference that the frequency response IH(ejo) I of a BIBO

stable convolution system is in fact a continuous function of 0.

Another interpretation of II h IIH-, perhaps more often appropriate, is as the RMS

gain of (1.0.1). Let us define the RMS value of a signal u to be
S1K-1 2] 1/2

Iu "RMS A lim sup . u]

Then we have Ily 11RMs < IIh 11H-Ilu 11RMS, and this bound is sharp, indeed there is a

nonzero u with Ily IIRMS = 1lh IH-luIIU "RMS .

Note that I'I RMS is not a norm, but only a seminorm, since we can have

nonzero signals with zero RMS value. For example, any 'transient' or decaying u

(u (k) -+0 as k - **) has zero RMS value.

1.3. RMS Response to White Inputs

We say that a signal u is white if

1im 1 K-1 Il m-0
K-* K i Ui+m -" 0 m>O

i o

Thus white signals have an RMS value of 1.
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While 1lh [IH- is the maximum RMS value of the output of (1.0.1) when the

input signal has RMS value 1, if we restrict our attention to white input signals the

RMS value of the output is always II h 112, that is,

IIh*u IIRMS = IIh 112 for u white

1.4. Relations Among Peak and RMS Gains, RMS Response to White Inputs /

We have seen three measures of the 'size' of the system (1.0.1): its peak and

RMS gains, and its RMS response to white inputs. Intuition suggests that these meas-

ures are related. For example, it is tempting to conclude that if (1.0.1) has small RMS

gain, it should have small peak gain, but this is simply not true.

In general nothing can be said other than

IIh 112< IIh 1H"- Ilh IlI

Convolution systems with small RMS gain can have arbitrarily large peak gains,

indeed infinite peak gain. The system (1.2.4) described in §1.2 has finite RMS gain

Ith 11H = sup 1ei(Xi= e-1/2

but infinite peak gain, since as noted in §1.2 BIBO stable convolution systems have

continuous frequency responses, yet for this example, H (eje) is not continuous at 0--0.

Similarly a convolution system can have small RMS response to white inputs but

infinite RMS gain; an example is given by H (k) = (1-X) -1 3 , that is,

hk =A (k !)-H(k)(0) = 1-47 ..... (3k-2)
3 k+

This H is unbounded near X=1, hence II h IIH-"-, and so this convolution system can

have infinite RMS response to an input with RMS value finite, say, 1. However, its

RMS response to white inputs is finite, since
2n

Ilh 112 = (27c) - f IH(eJ) 12dO
0

= 7r '2-1 3f(1-cosO)-1'3de = 9-2-1'"3 fu-1 6(2-u) - 12du _< nr-12"3
0 0

'**I* *
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2. Controller and Filter Design / €E / -

Many problems in controller and filter design can be cast in terms of making

some 'error' convolution operator 'small' (see, e.g., [VID2]). Usually the error opera-

tor can be interpreted as mapping an input or disturbance to an error or output.

Depending on our notion of size of a convolution operator, the goal of minimizing the

error operator yields different controller or filter design schemes.

The linear quadratic Gaussian (LQG) controller minimizes the RMS response to

white inputs of a certain (usually multi-input multi-output) error convolution operator.

In 1979, Zames [ZAMI] pointed out that controller design schemes which minimize a

gain ('multiplicative seminorm') have more desirable robustness properties than those

which minimize a measure of the error operator which is not a gain, e.g. the RMS

response to white inputs. He proposed to design controllers which minimize the RMS

gain of the error operator, that is, the H' norm of the error impulse response.

Implicit in such frequency response methods is the assumption that in practice, an

error operator small in the sense of maximum frequency response should be small in

other senses, e.g. peak gain. The examples given in §1.4 show that this assumption

does not hold generally, but we will show that a weak form of this assumption does

hold in practice.

Recently Vidyasagar [VID1] proposed to design controllers which minimize the

peak gain of an error operator, that is, the l1 -norm of the error impulse response;

Dahleh and Pearson [DAH1] gave a solution to the lI-optimal controller design prob-

lem for discrete-time systems in 1985. A question which arises immediately is, how

different can systems designed with LQG, H' and 11-optimal controllers be? The

examples of § 1.4 suggest that they can be radically different.

3. Bounds for Finite Dimensional Systems / 4 -_

In most cases of practical interest, the impulse response h is that of a finite-

dimensional dynamical system (A, b, c, d ):

xk+l = Axk + buk yk = cxk + duk x 0 = 0 (3.1)

where A e IR"'n, b, cT E IR", and d e IR. Thus ho=d, and fork >0, hk =cA k-lb.

For such impulse responses it is possible to bound the peak gain in terms of the RMS

gain and n, the dimension of the state space.

Theorem 1: If h comes from the dynamical system (3.1), then

11 h 111 -5 (2n +1) II h II H (3.2a)

-- a .'
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If in addition d=O, then

IIh I1 < 2n IIh I H- (3.2b)

The continuous-time version of Theorem 1 is a recent (unpublished) result of

Gohberg and Doyle [HWL].

We mention that these bounds are asymptotically sharp, that is, there is a

sequence of dynamical systems with the ratios of peak to (2n+l) times the RMS gain

converging to one as n -- o-.

Of course the bounds are sharpest when n is as small as possible, i.e. the system

(3.1) is a minimal realization of h. We henceforth assume this. We will also assume

that the system is 12 stable, since otherwise the bounds above are vacuous; with the

minimality assumption this implies that the eigenvalues of A have magnitudes less

than one.

In fact the results (3.2) are implied by a sharper bound involving the Hankel

singular values of the impulse response h. Recall that the Hankel singular values

01 1, . . . , all,, of (3.1) are the squareroots of the eigenvalues of Wo W, where W,

and W are the observability and controllability Grammians of (3.1), i.e.

W = A TIATkcTcAk WC A ZAkbbTATk

k=0 k=O

(these sums make sense because the eigenvalues of A have magnitude less than one).

We order the Hankel singular values as usual:

H I2t ... > GYtn >0

The al i's depend only on the impulse response h and not on the particular realization

(A, b, c, d) of h, and so may be unambiguously called the Hankel singular values of

h.

Theorem 2:

SIIh 111  1d I + 2(all +...+aln) (3.3)

We postpone the proof of Theorem 2.

Lemma 1:

IIh IIH >0 Gil1

Lemma 1 is well known; it follows immediately from the characterizations

IlhIl =sup 2  U,2 = 1, y=h*u

i4.O i=O

5RW~~, 

.1 
1I, I
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aI SUP{Xyi 2 f u X 2 
-1, Uk =uk+1 --0, k 0, y =h*u}

(see e.g. [DES] for the first and [GLO] for the second). Thus 11 h IIH-> ( 1 .

Theorem 1 follows immediately from Theorem 2 and lemma 1:

I~h 11 Id +2alw :5 Id I +2n a11 :5 Id I +2n Ilh IIl-

Setting d =0 yields (3.2b). Noting that 11h IIH *: IH(0)I = Id I yields
IlIlh 11 :5(2n +1)11I I 'H-, which is (3.2a).

We mention here that the sharper bound (3.3) shows that the order n appearing in
the bounds (3.2) can really be taken to be the effective order of the system, meaning
the number of significant Hankel singular values, as opposed to the number of
nonzero Hankel singular values.

Proof of Theorem 2:

1ih 11, = Id I + IcAkb I-

=Id I + IcA 2k b I + ICAlk+lb 1 (3.4)
k=0 kO

Let us first consider the second term in (3.4). By the Cauchy-Schwarz inequality in
JRn. ICA 2k b1 5IIARTkc112I11A kb 112, SO

SI cA 2' b 1 5 IIATk CT 112 11Akb 112 5
k -- k=O

IIA TkCT 112] C(IIwk 1122]

using the Cauchy-Schwarz inequality in 12. Similarly the third term in (3.4) can be
bounded above as

ICA 2k+lb 1 5 IIAkc 11211 IIk +b 112 :
k=O k=O

:5 ~IIA TkcT 112] CIAk+1b 1122

* ]1/2

-(TrW 1/2 t~xkbbTA~ (TrW )"2'(TrWc - I b 1122)1/2

(TrW0 TrWC)"12
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Thus from (3.4),

11h II1 I Idi +2(TrWoTrWc) 1 2  (3.5)

Now (3.5) is true for any realization {A ,b, c, d) of h; in particular for a balanced

realization {Ab, bb, cb, d ) of h, we have Wo = Wc = diag [all 1 ..... n] A 11. Thus we

have

I Ih I I I<: I d I + 2((H +...+(YHn)

which establishes Theorem 2.

It is interesting to note that expressions similar to TrWoTrWc have appeared in

recent work on sensitivity and overflow analysis of realizations of h [MUL,THI].

It is worth mentioning that the balanced realization used above yields the best

bound for II h II 1 based on the inequality (3.5). We will now show among all realiza-

tions of h, TrWo TrWc has minimum value Xaoi, which is achieved by and only by

any realization with W, a multiple of Wc , the balanced realization a special case of

this.

For any matrices F and G we have the inequality

Tr(FTG) = 21=(rFq < ijGij 5 (T=(FTF)Tr(GTG)"
i~ I, kd jI

with equality if and only if F and G are multiples of each other. Now if W0 and Wc

are the Grammians of any (order n) realization of h, then they can be expressed as

W, = TrTZH W = T-17-11T - r

where T is some nonsingular matrix (in fact, the coordinate transformation taking the

balanced realization into the given realization). Applying the inequality above with

F =I1 '2 T and G = T2 T-T yields

(TrWo TrWc)" 2 > Tr(TT ,1 T-T) = TrY,11 = FCni (3.6)

Moreover equality obtains only when Z,112 T is a multiple of IH12 T-T, which is

equivalent to TTT = cc for some constant ac. This implies that c*3Wo = Wc; conversely

if Wo is a multiple of Wc, then TTT c! for some constant c, and equality obtains in

(3.6). Thus the claim above is established.

Finally, we note that it is not possible to bound the RMS gain of a finite dimen-

sional system in terms of its RMS response to white inputs and its order. Let 0 < r < 1,

and consider the first order system Xk+1 = rxk + uk, Yk =Xk. Thus h0 = 0 and for k >0,

hk =rk- 1, so Ilh IIH-=(l-r) - 1, and IIh 112=(1-r 2)-112. For r near one, the ratio
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1li n111/ 11/1 112 is unbounded, establishing the impossibility of bounding this ratio in

terms of the system order (here, one).
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